According to (3.3) loc. cit., if we transform from (x^1, x^2, \ldots, x^n) to (z^1, z^2, \ldots, z^n) the functions $\Gamma_{i\alpha}^i$ are transformed as follows:

$$\overline{\Gamma}_{i\alpha}^{i}(z) = \Gamma_{ij}^{i}(x) \frac{\partial x^{j}}{\partial z^{\alpha}} + \frac{\partial}{\partial z^{\alpha}} \left(\frac{\partial x^{j}}{\partial z^{i}}\right) \cdot \frac{\partial z^{i}}{\partial x^{j}}$$
$$= \Gamma_{ij}^{i}(x) \frac{\partial x^{j}}{\partial z^{\alpha}} + \frac{1}{\Delta} \frac{\partial \Delta}{\partial z^{\alpha}}$$

where Δ is the Jacobian, $|\partial x^j/\partial z^i|$ of the transformation. The last equations are the same as

$$\overline{\Gamma}_{i\alpha}^{i}(z) = \frac{\partial \log \gamma}{\partial x^{j}} \frac{\partial x^{j}}{\partial z^{\alpha}} + \frac{\partial \log \Delta}{\partial z^{\alpha}} = \frac{\partial}{\partial z^{\alpha}} \log \overline{\gamma}$$

where we are denoting by $\overline{\gamma}$ the function obtained by substituting the *x*'s as functions of the *z*'s in γ and multiplying by Δ . Hence the function γ is a scalar density and

$$\int \gamma \, dx^1 \, dx^2 \, \dots \, dx^n$$

may be taken as a definition of volume.

AFFINE GEOMETRIES OF PATHS POSSESSING AN INVARIANT INTEGRAL

By L. P. EISENHART

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY

Read before the Academy, November 16, 1922

1. In the Riemann geometry volume is defined by the invariant integral $\int \sqrt{g} dx^1 \dots dx^n$ where g is the determinant $|g_{ij}|$. If g' denotes the corresponding function when the coördinates are $x'^2, \dots x'^n$, then

$$\sqrt{g'} = \sqrt{g} \,\Delta, \tag{1.1}$$

where Δ is the Jacobian $\left|\frac{\partial x}{\partial x'}\right|$. When there exists for a geometry of paths a function g satisfying (1.1), we say that the geometry possesses an invariant integral, and g is called a *scalar density*. In a recent note (these PROCEEDINGS, 9, p. 3) Professor Veblen showed that in an affine space for which $S_{ij} = 0$ a scalar density is defined by $\Gamma_{\alpha i}^{\alpha} = \partial \log \sqrt{g}/\partial x^{i}$; he calls

such a space equiaffine. It is the purpose of this note to show that a necessary and sufficient condition that a goemetry of paths possess an invariant integral is that S_{ij} be the curl of a covariant vector, and to derive some consequences of this theorem.

2. Let Γ_{jk}^{i} be the functions appearing in the equations of the paths (these PROCEEDINGS, Feb., 1922), then the functions $\Gamma_{jk}^{\prime i}$ for a set of coördinates x' are given by

$$\frac{\partial^2 x^p}{\partial x'^i \partial x'^j} + \Gamma^p_{qr} \frac{\partial x^q}{\partial x'^i} \frac{\partial x^r}{\partial x'^j} = \Gamma'^i_{ij} \frac{\partial x^p}{\partial x''}, \qquad (2.1)$$

and the curvature tensor is defined by

۰

$$B_{qrs}^{p} = \frac{\partial \Gamma_{qs}^{p}}{\partial x^{r}} - \frac{\partial \Gamma_{qr}^{p}}{\partial x^{s}} + \Gamma_{\alpha r}^{p} \Gamma_{qs}^{\alpha} - \Gamma_{\alpha s}^{p} \Gamma_{qr}^{\alpha}.$$
(2.2)

By definition we have

$$S_{ij} = B^{\alpha}_{\alpha ij} = \frac{\partial \Gamma^{\alpha}_{\alpha j}}{\partial x^{i}} - \frac{\partial \Gamma^{\alpha}_{\alpha i}}{\partial x^{j}}.$$
 (2.3)

If equation (1.1) be differentiated, we have, in consequence of (2.1),

$$\frac{\partial\sqrt{g'}}{\partial x'^{i}} = \frac{\partial\sqrt{g}}{\partial x^{\alpha}}\frac{\partial x^{\alpha}}{\partial x'^{i}}\Delta + \sqrt{g}\Delta \frac{\partial^{2}x}{\partial x'^{i}\partial x'^{j}}\frac{\partial x'^{j}}{\partial x^{\alpha}}$$
$$= \Delta\sqrt{g}\left(\frac{\partial\log\sqrt{g}}{\partial x^{\alpha}}\frac{\partial x^{\alpha}}{\partial x'^{i}} + \Gamma_{\alpha i}'^{\alpha} - \Gamma_{\alpha q}^{\alpha}\frac{\partial x^{q}}{\partial x'^{i}}\right),$$

or, by means of (1.1),

$$\frac{\partial \log \sqrt{g'}}{\partial x'^{i}} - \Gamma_{\alpha i}'^{\alpha} = \left(\frac{\partial \log \sqrt{g}}{\partial x^{j}} - \Gamma_{\alpha j}^{\alpha}\right) \frac{\partial x^{j}}{\partial x'^{i}}.$$
 (2.4)

From this equation it follows that

$$\partial \log \sqrt{g} / \partial x^j = \Gamma^{\alpha}_{\alpha j} - \varphi_j.$$
 (2.5)

where φ_j is a covariant vector. The conditions of integrability of equations (2.5) are

$$\frac{\partial \Gamma^{\alpha}_{\alpha j}}{\partial x^{i}} - \frac{\partial \Gamma^{\alpha}_{\alpha i}}{\partial x^{j}} = \frac{\partial \varphi_{j}}{\partial x^{i}} - \frac{\partial \varphi_{i}}{\partial \varphi^{j}}, \qquad (2.6)$$

that is, S_{ij} , as defined by (2.3), is the curl of a vector, φ .

Conversely, if S_{ij} is the curl of a vector, φ_i , we have equations of the form (2.6) and (2.5) in each coördinate system, x and x', and consequently

PROC. N. A. S.

equation (2.4) holds. If equations (2.1) be multiplied by $\frac{\partial x'^{j}}{\partial x^{p}}$ and summed for p and j, we obtain

$$\Gamma_{\alpha i}^{\prime \alpha} = \Gamma_{\alpha q}^{\alpha} \frac{\partial x^{q}}{\partial x^{\prime i}} + \frac{\partial \log \Delta}{\partial x^{\prime i}}.$$

By means of this relation, we obtain (1.1) from (2.4), and the theorem of § 1 is proved.

3. In a former paper (these PROCEEDINGS, Aug., 1922) the author considered spaces with corresponding paths and made the restriction in § 1 of that paper that s is the same for all paths. If this restriction be removed, the formulas (3.4) and (3.6) written in the form

$$\bar{\Gamma}^{i}_{jk} = \Gamma^{i}_{jk} + \delta^{i}_{j}\varphi_{k} + \delta^{i}_{kj}\varphi_{j} \ (\delta^{i}_{j=0 \text{ for } i=j}_{for \ i \pm j}), \tag{3.1}$$

where φ_i is a covariant vector, give the necessary and sufficient relations between the Γ 's of two geometries of paths so that the paths are in one-toone correspondence, and (3.7) gives the relations between s and \bar{s} along corresponding paths. Equations (3.1) have been found by Weyl (*Gött. Nach.*, 1921), and also independently by Veblen (these PROCEEDINGS, Dec., 1922); they have interpreted them as the relations between the Γ 's which yield the same paths in a space. Also they have remarked that each choice of the vector φ_i yields an affine space, whereas the paths define a projective space.

In my former paper it was shown that

$$\bar{S}_{ij} = S_{ij} + (n+1) (\varphi_{ji} - \varphi_{ij}). \tag{3.2}$$

From this equation it follows that if S_{ij} is the curl of a vector, and the vector $\varphi_i/(n + 1)$ is used in (3.1), then $\bar{S}_{ij} = 0$, that is, the space is equiaffine.

By definition the contracted curvature tensor R_{ij} is given by

$$R_{ij} = B^{\alpha}_{ij\alpha} \tag{3.3}$$

From this it follows that

$$R_{ij} - R_{ij} = S_{ji} \tag{3.5}$$

Hence the above result may be stated as follows:

Among the affine spaces possessing an invariant integral and having corresponding paths, one is equiaffine; for this space the contracted tensor is symmetric.

This result takes the place of the theorem stated in § 5 of my former paper, where an error was made in concluding that S_{ij} is the curl of a vector

for any geometry of paths (cf. my note on this point in the Bull. Amer. Math. Soc., Dec., 1922).

4. The contracted tensor for a Riemann space is symmetric. Consequently if in (3.1) we replace Γ_{jk}^{i} by their expressions as Christoffel symbols of the second kind for a Riemann space, the functions $\overline{\Gamma}_{jk}^{i}$ define an affine space possessing an invariant integral. Hence:

The spaces with paths corresponding to the paths of a Riemann space possess an invariant integral.

CLOSED CONNECTED SETS WHICH ARE DISCONNECTED BY THE REMOVAL OF A FINITE NUMBER OF POINTS

By John Robert Kline

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA Communicated, October 11, 1922

THEOREM A. Suppose k is a positive integer and M is a closed connected point set in Euclidean space of two dimensions such that

(1) if $P_1, P_2, \ldots P_k$ are any k distinct points of M, then $M - (P_1 + P_2 + \ldots + P_k)$ is disconnected.

(2) if $Q_1, Q_2, \ldots, Q_{k-1}$ are any (k - 1) distinct points of M, then $M - (Q_1 + Q_2 \ldots Q_{k-1})$ is connected.

Under these conditions, M is a continuous curve.¹

Proof.—Let us suppose that M is not connected im kleinen. Then there exists a point P belonging to M and a circle K with centre at P, such that within every circle whose centre is P there exists a point which does not lie together with P in any connected subset of M that lies entirely within K. Let $K_1, K_2 \ldots$ denote an infinite sequence of circles with centre at P and radius r/2n, where r is the radius of K. Let X_n denote a point within K_n such that X_n and P do not lie together in a connected subset of M which lies entirely within K. Let K' denote a circle with centre at P and radius 3r/4. It follows with the use of a theorem due to Zoretti² that there is a closed connected set g_n , containing X_n and at least one point of K' not containing P and lying entirely within or on K'. It may easily be proved that there exist point sets t_{n_1}, t_{n_2}, \ldots such that (1) for every *i*, t_{n_i} is a closed connected subset of M having at least one point on K' and at least one point on K_1 but no point within K_1 or without K', (2) for no values of *i* and $j \ (i \neq J)$ does t_{n_i} have a point in common with t_{n_i} . It follows that there exists an infinite sequence of integers q_1, q_2, \ldots such that for every i, q_{i+1} $>q_i$ and a closed connected set t and a sequence of closed connected sets $k_{nq_1}, k_{nq_2} \dots$ such that (1) for every i, k_{nq_i} is a subset of t_{nq_i} , (2) each of