
MATHEMA TICS: L. P. EISENHART

According to (3.3) loc. cit., if we transform from (xI, x2, . . ., xI) to (z', z2,
Z') the functions rX. are transformed as follows:

b (bx'\
F:a(z) =r (x) 1+-

bJza bJza \z'I bx

r= (x) +?:z'a A )Za

where A is the Jacobian, I8x3/ziI of the transformation. The last equations
are the same as

blogy ax' blogA _ -
rt () a+ (z- log Y

where we are denoting by -y the function obtained by substituting the x's
as functions of the z's in y and multiplying by A. Hence the function 'y
is a scalar density and

f ydxldx2... dxn

may be taken as a definition of volume.
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1. In the Riemann geometry volume is defined by the invariant inte-
gral f +\g dxl ... dx" where g is the determinant Igi>|. If g' denotes the
corresponding function when the coordinates are x 12,... x", then

-\/= -vg, (1. 1)

where A is the Jacobian -a. When there exists for a geometry of

paths a function g satisfying (1. 1), we say that the geometry possesses an
invariant integral, and g is called a scalar density. In a recent note (these
PROCEWDINGS, 9, p. 3) Professor Veblen showed that in an affine space for
which Sij = 0 a scalar density is defined by rPi = a log Vg/ax1; he calls
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such a space equiaffine. It is the purpose of this note to show that a nec-
essary and sufficient condition that a goemetry of paths possess an invariant
integral is that Sij be the curl of a covariant vector, and to derive some conse-
quences of this theorem.

2. Let r1,k be the functions appearing in the equations of the paths
(these PROCZEDINGS, Feb., 1922), then the functions r'nk for a set of coordi-
nates x' are given by

a2XP bxr

aXXj+ rPraX*aXt r..aaX (2. 1)

and the curvature tensor is defined by

BP= Qsrt+ r ctr.f-.rat. (2.2)qr x'7' f qs et

By definition we have

S = Bet= -Cl (2.3)cei xi bx

If equation (1.1) be differentiated, we have, in consequence of (2.1),

-vg ava A + v a2 aax,' axcf axlt bxlbx'$x axe,

=AV (log -\/g bx+rc t -
b

=Avg( axagaXZi+ r'aai - raa a,)

or, by means of (1.1),

6 logxV/g' IrPa - UlogX/g (2.4)
bxti rai r ' (2.4)

From this equation it follows that

alog\g/axj = r.i- f>. (2.5)

where pj is a covariant vector. The conditions of integrability of equations
(2.5) are

bra_ brcli b(P _ at ( 6
___-br. ~jOj~ j) (2.6)

that is, Si., as defined by (2.3), is the curl of a vector, sP.
Conversely, if Sij is the curl of a vector, Yi, we have equations of the

form (2.6) and (2.5) in each co6rdinate system, x and x', and consequently
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equation (2.4) holds. If equations (2.1) be multiplied by - and summed

for p and j, we obtain

rl~t= r 6logA
r', =aq a8xt + ax 1iS^

By means of this relation, we obtain (1.1) from (2.4), and the theorem of
§ 1 is proved.

3. In a former paper (these PROCZIDINGS, Aug., 1922) the author con-
sidered spaces with corresponding paths and made the restriction in § 1 of
that paper that s is the same for all paths. If this restriction be removed,
the formulas (3.4) and (3.6) written in the form

rJ2k = rjk + 5j(ik + 5k'O,9 = for i) (3.1)

where vi is a covariant vector, give the necessary and sufficient relations
between the r 's of two geometries of paths so that the paths are in one-to-
one correspondence, and (3.7) gives the relations between s and s along
corresponding paths. Equations (3.1) have been found by Weyl (Gott.
Nach., 1921), and also independently by Veblen (these PROCUSDINGS, Dec.,
1922); they have interpreted them as the relations between the rs which
yield the same paths in a space. Also they have remarked that each
choice of the vector ( yields an affine space, whereas the paths define a
projective space.

In my former paper it was shown that

Sij = Sij + (n + 1) (pji - vi) (3.2)

From this equation it follows that if Sij is the curl of a vector, and the vec-
tor (pi/(n + 1) is used in (3.1), then 5,j = 0, that is, the space is equiaffine.
By definition the contracted curvature tensor Rij is given by

Rij = Bsa (3.3)
From this it follows that

R-j Rij =Sji (3.5)

Hence the above result may be stated as follows:
Among the afline spaces possessing an invariant integral and having cor-

responding paths, one is equiaffine; for this space the contracted tensor is
symmetric.

This result takes the place of the theorem stated in § 5 of my former
paper, where an error was made in concluding that Sij is the curl of a vector
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for any geometry of paths (cf. my note on this point in the Bull. Amer.
Math. Soc., Dec., 1922).

4. The contracted tensor for a Riemann space is symmetric. Con-
sequently if in (3.1) we replace rj* by their expressions as Christoffel
symbols of the second kind for a Riemann space, the functions r1k define
an affine space possessing an invariant integral. Hence:

The spaces with paths corresponding to the paths of a Riemann space pos-
sess an invariant integral.
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THEOREM A. Suppose k is a positive integer and M is a closed connected
point set in Euclidean space of two dimensions such that

(1) if PI, P2, ... Pk are any k distinct points ofM, then M - (Pl + P2 +...
+ Pk) is disconnected.

(2) if Ql, Q2,. . . Qk-1 are any (k - i) distinct points of M, thenM-
(Ql + Q2 * . Qk-1) is connected.

Under these conditions, M is a continuous curve.'
Proof.-Let us suppose that M is not connected im kleinen. Then there

exists a point P belonging to M and a circle K with centre at P, such that
within every circle whose centre is P there exists a point which does not
lie together with P in any connected subset of M that lies entirely within K.
Let K,, K2 . .. denote an infinite sequence of circles with centre at P and
radius r/2n, where r is the radius of K. Let X,, denote a point within Kn
such that X. and P do not lie together in a connected subset of M which
lies entirely within K. Let K' denote a circle with centre at P and radius
3r/4. It follows with the use of a theorem due to Zoretti2 that there is a
closed connected set gn, containing Xn and at least one point of K' not
containing P and lying entirely within or on K'. It may easily be proved
that there exist point sets tn1, ti,, .. . such that (1) for every i, t,,, is a closed
connected subset of M having at least one point on K' and at least one
point on K, but no point within K, or without K', (2) for no values of i and
j (i F J) does tni have a point in common with t,,,. It follows that there
exists an infinite sequence of integers ql, q2, . . such that for every i, qi + 1
> qi and a closed connected set t and a sequence of closed connected sets
knqji knq2 . . . such that (1) for every i, kn,i is a subset of tnqi, (2) each of
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