According to (3.3) loc. cit., if we transform from ($x^{1}, x^{2}, \ldots, x^{n}$) to (z^{1}, z^{2}, \ldots, z^{n}) the functions $\Gamma_{i \alpha}^{i}$ are transformed as follows:

$$
\begin{aligned}
\bar{\Gamma}_{i \alpha}^{i}(z) & =\Gamma_{i j}^{i}(x) \frac{\partial x^{j}}{\partial z^{\alpha}}+\frac{\partial}{\partial z^{\alpha}}\left(\frac{\partial x^{j}}{\partial z^{i}}\right) \cdot \frac{\partial z^{i}}{\partial x^{j}} \\
& =\Gamma_{i j}^{i}(x) \frac{\partial x^{j}}{\partial z^{\alpha}}+\frac{1}{\Delta} \frac{\partial \Delta}{\partial z^{\alpha}}
\end{aligned}
$$

where Δ is the Jacobian, $\left|\partial x^{j} / \partial z^{i}\right|$ of the transformation. The last equations are the same as

$$
\widetilde{\Gamma}_{i \alpha}^{i}(z)=\frac{\partial \log \gamma}{\partial x^{j}} \frac{\partial x^{j}}{\partial z^{\alpha}}+\frac{\partial \log \Delta}{\partial z^{\alpha}}=\frac{\partial}{\partial z^{\alpha}} \log \bar{\gamma}
$$

where we are denoting by $\bar{\gamma}$ the function obtained by substituting the x 's as functions of the z 's in γ and multiplying by Δ. Hence the function γ is a scalar density and

$$
\int \gamma d x^{1} d x^{2} \ldots d x^{n}
$$

may be taken as a definition of volume.

AFFINE GEOMETRIES OF PATHS POSSESSING AN INVARIANT INTEGRAL

By L. P. Eisenhart

Department of Mathematics, Princeton University

Read before the Academy, November 16, 1922

1. In the Riemann geometry volume is defined by the invariant integral $\int \sqrt{g} d x^{1} \ldots d x^{n}$ where g is the determinant $\left|g_{i j}\right|$. If g^{\prime} denotes the corresponding function when the coördinates are $x^{\prime 2}, \ldots x^{\prime n}$, then

$$
\begin{equation*}
\sqrt{\bar{g}^{\prime}}=\sqrt{g} \Delta, \tag{1.1}
\end{equation*}
$$

where Δ is the Jacobian $\left|\frac{\partial x}{\partial x^{\prime}}\right|$. When there exists for a geometry of paths a function g satisfying (1.1), we say that the geometry possesses an invariant integral, and g is called a scalar density. In a recent note (these Proceedings, 9, p. 3) Professor Veblen showed that in an affine space for which $S_{i j}=0$ a scalar density is defined by $\Gamma_{\alpha i}^{\alpha}=\partial \log \sqrt{g} / \partial x^{i}$; he calls
such a space equiaffine. It is the purpose of this note to show that a necessary and sufficient condition that a goemetry of paths possess an invariant integral is that $S_{i j}$ be the curl of a covariant vector, and to derive some consequences of this theorem.
2. Let $\Gamma_{j k}^{i}$ be the functions appearing in the equations of the paths (these Proceedings, Feb., 1922), then the functions $\Gamma_{j k}^{\prime i}$ for a set of coördinates x^{\prime} are given by

$$
\begin{equation*}
\frac{\partial^{2} x^{p}}{\partial x^{\prime i} \partial x^{\prime j}}+\Gamma_{q r}^{p} \frac{\partial x^{q}}{\partial x^{\prime i}} \frac{\partial x^{r}}{\partial x^{\prime j}}=\Gamma_{i j}^{\prime t} \frac{\partial x^{p}}{\partial x^{\prime \prime}} \tag{2.1}
\end{equation*}
$$

and the curvature tensor is defined by

$$
\begin{equation*}
B_{q r s}^{p}=\frac{\partial \Gamma_{q s}^{p}}{\partial x^{v}}-\frac{\partial \Gamma_{q r}^{p}}{\partial x^{s}}+\Gamma_{\alpha r}^{p} \Gamma_{q s}^{\alpha}-\Gamma_{\alpha s}^{p} \Gamma_{q r}^{\alpha} \tag{2.2}
\end{equation*}
$$

By definition we have

$$
\begin{equation*}
S_{i j}=B_{\alpha i j}^{\alpha}=\frac{\partial \Gamma_{\alpha j}^{\alpha}}{\partial x^{i}}-\frac{\partial \Gamma_{\alpha i}^{\alpha}}{\partial x^{j}} . \tag{2.3}
\end{equation*}
$$

If equation (1.1) be differentiated, we have, in consequence of (2.1),

$$
\begin{aligned}
\frac{\partial \sqrt{g^{\prime}}}{\partial x^{\prime i}} & =\frac{\partial \sqrt{g}}{\partial x^{\alpha}} \frac{\partial x^{\alpha}}{\partial x^{\prime i}} \Delta+\sqrt{g} \Delta \frac{\partial^{2} x}{\partial x^{\prime i} \partial x^{\prime j}} \frac{\partial x^{\prime j}}{\partial x^{\alpha}} \\
& =\Delta \sqrt{g}\left(\frac{\partial \log \sqrt{g}}{\partial x^{\alpha}} \frac{\partial x^{\alpha}}{\partial x^{\prime i}}+\Gamma_{\alpha i}^{\prime \alpha}-\Gamma_{\alpha q}^{\alpha} \frac{\partial x^{q}}{\partial x^{\prime i}}\right)
\end{aligned}
$$

or, by means of (1.1),

$$
\begin{equation*}
\frac{\partial \log \sqrt{g^{\prime}}}{\partial x^{\prime i}}-\Gamma_{\alpha i}^{\prime \alpha}=\left(\frac{\partial \log \sqrt{g}}{\partial x^{j}}-\Gamma_{\alpha j}^{\alpha}\right) \frac{\partial x^{j}}{\partial x^{\prime i}} \tag{2.4}
\end{equation*}
$$

From this equation it follows that

$$
\begin{equation*}
\partial \log \sqrt{g} / \partial x^{j}=\Gamma_{\alpha j}^{\alpha}-\varphi_{j} \tag{2.5}
\end{equation*}
$$

where φ_{j} is a covariant vector. The conditions of integrability of equations (2.5) are

$$
\begin{equation*}
\frac{\partial \Gamma_{\alpha j}^{\alpha}}{\partial x^{i}}-\frac{\partial \Gamma_{\alpha i}^{\alpha}}{\partial x^{j}}=\frac{\partial \varphi_{j}}{\partial x^{i}}-\frac{\partial \varphi_{i}}{\partial \varphi^{i}}, \tag{2.6}
\end{equation*}
$$

that is, $S_{i j}$, as defined by (2.3), is the curl of a vector, φ.
Conversely, if $S_{i j}$ is the curl of a vector, φ_{i}, we have equations of the form (2.6) and (2.5) in each coördinate system, x and x^{\prime}, and consequently
equation (2.4) holds. If equations (2.1) be multiplied by $\frac{\partial x^{\prime j}}{\partial x^{p}}$ and summed for p and j, we obtain

$$
\Gamma_{\alpha i}^{\prime \alpha}=\Gamma_{\alpha q}^{\alpha} \frac{\partial x^{q}}{\partial x^{\prime i}}+\frac{\partial \log \Delta}{\partial x^{\prime i}}
$$

By means of this relation, we obtain (1.1) from (2.4), and the theorem of § 1 is proved.
3. In a former paper (these Proceedings, Aug., 1922) the author considered spaces with corresponding paths and made the restriction in § 1 of that paper that s is the same for all paths. If this restriction be removed, the formulas (3.4) and (3.6) written in the form

$$
\bar{\Gamma}_{j k}^{i}=\Gamma_{j k}^{i}+\delta_{j}^{i} \varphi_{k}+\delta_{k \dot{j}}^{i} \varphi_{j}\left(\delta_{j}^{i}=1 \begin{array}{l}
i \text { for } i=j \tag{3.1}\\
0 \\
\text { for } i \pm j \\
j
\end{array}\right),
$$

where φ_{i} is a covariant vector, give the necessary and sufficient relations between the Γ 's of two geometries of paths so that the paths are in one-toone correspondence, and (3.7) gives the relations between s and \bar{s} along corresponding paths. Equations (3.1) have been found by Weyl (Gött. Nach., 1921), and also independently by Veblen (these Proceedings, Dec., 1922); they have interpreted them as the relations between the 「's which yield the same paths in a space. Also they have remarked that each choice of the vector φ_{i} yields an affine space, whereas the paths define a projective space.

In my former paper it was shown that

$$
\begin{equation*}
\bar{S}_{i j}=S_{i j}+(n+1)\left(\varphi_{j i}-\varphi_{i j}\right) . \tag{3.2}
\end{equation*}
$$

From this equation it follows that if $S_{i j}$ is the curl of a vector, and the vector $\varphi_{i} /(n+1)$ is used in (3.1), then $\bar{S}_{i j}=0$, that is, the space is equiaffine.

By definition the contracted curvature tensor $R_{i j}$ is given by

$$
\begin{equation*}
R_{i j}=B_{i j \alpha}^{\alpha} \tag{3.3}
\end{equation*}
$$

From this it follows that

$$
\begin{equation*}
R_{\imath j} \doteq R_{i j}=S_{j i} \tag{3.5}
\end{equation*}
$$

Hence the above result may be stated as follows:
Among the afine spaces possessing an invariant integral and having corresponding paths, one is equiafine; for this space the contracted tensor is symmetric.

This result takes the place of the theorem stated in § 5 of my former paper, where an error was made in concluding that $S_{i j}$ is the curl of a vector
for any geometry of paths (cf. my note on this point in the Bull. Amer. Math. Soc., Dec., 1922).
4. The contracted tensor for a Riemann space is symmetric. Consequently if in (3.1) we replace $\Gamma_{j k}^{i}$ by their expressions as Christoffel symbols of the second kind for a Riemann space, the functions $\bar{\Gamma}_{j k}^{i}$ define an affine space possessing an invariant integral. Hence:

The spaces with paths corresponding to the paths of a Riemann space possess an invariant integral.

CLOSED CONNECTED SETS WHICH ARE DISCONNECTED BY THE REMOVAL OF A FINITE NUMBER OF POINTS

By John Robert Kline
Department of Mathematics, University of Pennsylvania
Communicated, October 11, 1922

Theorem A. Suppose k is a positive integer and M is a closed connected point set in Euclidean space of two dimensions such that
(1) if $P_{1}, P_{2}, \ldots P_{k}$ are any k distinct points of M, then $M-\left(P_{1}+P_{2}+\ldots\right.$ $\left.+P_{k}\right)$ is disconnected.
(2) if $Q_{1}, Q_{2}, \ldots Q_{k-1}$ are any $(k-I)$ distinct points of M, then M $\left(Q_{1}+Q_{2} \ldots Q_{k-1}\right)$ is connected.

Under these conditions, M is a continuous curve. ${ }^{1}$
Proof.-Let us suppose that M is not connected im kleinen. Then there exists a point P belonging to M and a circle K with centre at P, such that within every circle whose centre is P there exists a point which does not lie together with P in any connected subset of M that lies entirely within K. Let $K_{1}, K_{2} \ldots$ denote an infinite sequence of circles with centre at P and radius $r / 2 n$, where r is the radius of K. Let X_{n} denote a point within K_{n} such that X_{n} and P do not lie together in a connected subset of M which lies entirely within K. Let K^{\prime} denote a circle with centre at P and radius $3 r / 4$. It follows with the use of a theorem due to Zoretti ${ }^{2}$ that there is a closed connected set g_{n}, containing X_{n} and at least one point of K^{\prime} not containing P and lying entirely within or on K^{\prime}. It may easily be proved that there exist point sets $t_{n_{1}}, t_{n}, \ldots$ such that (1) for every $i, t_{n_{i}}$ is a closed connected subset of M having at least one point on K^{\prime} and at least one point on K_{1} but no point within K_{1} or without K^{\prime}, (2) for no values of i and $j(i \neq J)$ does $t_{n_{i}}$ have a point in common with $t_{n_{i}}$. It follows that there exists an infinite sequence of integers q_{1}, q_{2}, \ldots such that for every i, q_{i+1} $>q_{i}$ and a closed connected set t and a sequence of closed connected sets $k_{n_{q_{1}}}, k_{n_{q_{2}}} \ldots$ such that (1) for every $i, k_{n_{q i}}$ is a subset of $t_{n_{q}}$, (2) each of

